Trigonometry reviewTrigonometric identities sin2x+cos2x=1\sin^2x+\cos^2x=1sin2x+cos2x=1 tanx=sinxcosx\tan x=\frac{\sin x}{\cos x}tanx=cosxsinx cscx=1sinx\csc x=\frac{1}{\sin x}cscx=sinx1 secx=1cosx\sec x=\frac{1}{\cos x}secx=cosx1 cotx=1tanx\cot x=\frac{1}{\tan x}cotx=tanx1 sin2x=2sinxcosx\sin 2x=2\sin x\cos xsin2x=2sinxcosx cos2x=cos2x−sin2x\cos 2x=\cos^2x-\sin^2xcos2x=cos2x−sin2x tan2x=2tanx1−tan2x\tan 2x=\frac{2\tan x}{1-\tan^2x}tan2x=1−tan2x2tanx sin(x±y)=sinxcosy±cosxsiny\sin(x\pm y)=\sin x\cos y\pm\cos x\sin ysin(x±y)=sinxcosy±cosxsiny cos(x±y)=cosxcosy∓sinxsiny\cos(x\pm y)=\cos x\cos y\mp\sin x\sin ycos(x±y)=cosxcosy∓sinxsiny tan(x±y)=tanx±tany1∓tanxtany\tan(x\pm y)=\frac{\tan x\pm\tan y}{1\mp\tan x\tan y}tan(x±y)=1∓tanxtanytanx±tany 1+tan2x=sec2x1 + tan^2x = sec^2x1+tan2x=sec2x 1+cot2x=csc2x1 + cot^2x = csc^2x1+cot2x=csc2x Related: Techniques of integrationEdit on GitHubPreviousDerivativesNextIntegrals