Notes@HKU by Jax

Probabilities

Probability notation and event types

A and BA or BNot A
IntersectionUnionCompliment

Mutually exclusive

A and B mutually exclusive P(AB)=0  P(AB)=P(A)+P(B)\leftrightarrow P(A\cap B) = 0\ \|\|\ P(A\cup B) = P(A) + P(B).

This means that the events cannot happen at the same time.

Collectively exhaustive

A and B collectively exhaustive P(AB)=1\leftrightarrow P(A\cup B) = 1

This means that one of the events must happen.

Conditional probabilities

The probability of A given that B occurs: P(A  B)=P(AB)P(B)P(A\ \|\ B) = \frac{P(A\cup B)}{P(B)}

Bayes' theorem: P(AB)=P(BA)P(A)P(B)=P(AB)P(BA)P(A)+P(BA)P(A)P(A\|B) = \frac{P(B\|A) \cdot P(A)}{P(B)} = \frac{P(A \cap B)}{P(B\|A) \cdot P(A) + P(B\|A') \cdot P(A')}

Independent events

A and B independent (A)×P(B)=P(AB)\leftrightarrow (A) \times P(B) = P(A\cap B).

Being independent means that the probability of an event has no influence on the other

Example

Two dice R and B are rolled.

  • Case A: Sum exactly 7
  • Case B: Sum exactly 12
  • Case C: Red die == 6
  1. Are A and C independent?
  2. Are B and C independent?
  • P(A)=636=16P(A) = \frac{6}{36} = \frac{1}{6}
  • P(B)=136P(B) = \frac{1}{36}
  • P(C)=636=16P(C) = \frac{6}{36} = \frac{1}{6}

For question 1:

P(A)×P(C)=136P(AC)=P(6,1)=136,as R must be 6 and B must be 1P(A)×P(C)=P(AC)    A and C are independent\begin{align*} P(A)\times P(C) &= \frac{1}{36}\\ P(A\cap C) = P(6,1) &= \frac{1}{36},\quad\text{as R must be 6 and B must be 1}\\ \therefore P(A)\times P(C) &= P(A\cap C)\implies A\ \text{and}\ C\ \text{are independent} \end{align*}

For question 2:

P(B)×P(C)=1216P(BC)=P(6,6)=136P(B)×P(C)P(BC)    B and C are not independent\begin{align*} P(B)\times P(C) &= \frac{1}{216}\\ P(B\cap C) = P(6,6) &= \frac{1}{36}\\ \therefore P(B)\times P(C) &\neq P(B\cap C)\implies B\ \text{and}\ C\ \text{are not independent} \end{align*}

On this page