Notes@HKU by Jax

Complex numbers

The imaginary number i=1i=\sqrt{-1}. A complex number is usually denoted as z=a+biz=a+bi. In operations, the imaginary number can be considered as an unknown, though note that i2=1i^2=-1 (and so forth).

Useful items

Common properties

The modulus: z=a2+b2\|z\|=\sqrt{a^2+b^2}

The conjugate: conj(z)=z^=abiconj(z) = \hat{z} = a-bi

The argument: arg(z)=θ=2tan1(ba+z)arg(z) = \theta = 2tan^{-1}(\frac{b}{a+\|z\|})

Polar form

We can write a complex number in polar form: z=r(cosθ+isinθ),where r=zz=r(\cos\theta+i\sin\theta),\quad \text{where } r=\|z\|.

This represents the point on a circle with radius rr, at the angle θ\theta.

Euler's formula

reiθ=r(cosθ+isinθ)re^{i\theta}=r(\cos\theta+i\sin\theta).

Using the formula, we can easily derive:

  • (cosθ+isinθ)n=(cosnθ+isinnθ)(\cos\theta+i\sin\theta)^n = (\cos{n\theta}+i\sin{n\theta})
  • (cosθ+isinθ)1=(cosθisinθ)(\cos\theta+i\sin\theta)^{-1} = (\cos{\theta}-i\sin{\theta})
  • (sinθ+icosθ)=i(cosθisinθ)=ieiθ(\sin\theta+i\cos\theta) = i(\cos{\theta}-i\sin{\theta})=ie^{-i\theta}

Complex roots

Consider nz=knz=k, the solutions to the equation is:

kw0+kw1++kwn1n solutionsfor w=e(2πin)\underbrace{kw^0 + kw^1 + \dots + kw^{n-1}}_{n\text{ solutions}}\quad for\ w = e^(\frac{2\pi i}{n}),

Set notation

Elements in a set are unique.

A={1An element,2,3Elements}B={xFor all  0<x<2Such that,AndxR}={1}A=\{\underbrace{\underbrace{1}_{\text{An element}},2,3}_{\text{Elements}}\}\quad\quad B=\{\underbrace{x}_{\text{For all}}\ |\ \underbrace{0<x<2}_{\text{Such that}}\underbrace{,}_{\text{And}}\quad x\in\mathbb{R}\}=\{1\}

Image under complex function

Given a complex function f(z)f(z) and a set of complex numbers D={g(z)C:h(z)}D=\{g(z)\in \mathbb{C}:h(z)\}, our goal is to solve for the function f(D)f(D) in a form that we can identify the shape / image.

General steps

  1. Find f(D)f(D) by finding f(g(z))f(g(z))
  2. Let f(g(z))f(g(z)) be x+yix'+y'i, then solve for xx and yy in terms of xx' and yy'
    (Note that g(z)g(z) and h(z)h(z) are functions of x+yix+yi)
  3. Substitute your xx and yy to f(D)f(D), so that all unknowns are in terms of xx' and yy'
  4. Rearrange h(z)h(z) to solve the shape of the image

Simple example

Let D={x+iyC x+iy>1}D=\{x+iy \in \mathbb{C}\ \| \|x+iy\|>1\}, with complex function f(z)=1/zf(z)=-1/z. Find f(D)f(D), then sketch the picture of f(D)f(D) on the complex plane. 23 Dec, Part 2 Assignment 2 Question 3

We first find f(D)f(D) by finding f(x+yi)f(x+yi):

f(x+yi)=1x+yif(D)={1x+yiCx+yi>1}f(x+yi)=\frac{-1}{x+yi}\rightarrow f(D)=\{\frac{-1}{x+yi}\in \mathbb{C}||x+yi|>1\}

Then let 1x+yi\frac{-1}{x+yi} be x+yix'+y'i, then solve for xx and yy in terms of xx' and yy'

x+yi=1x+yix+yi=1x+yix'+y'i=\frac{-1}{x+yi}\rightarrow x+yi=\frac{-1}{x'+y'i}

Substitute the values we found into f(D)f(D)

f(D)={x+yiC1x+yi>1}f(D)=\{x'+y'i\in \mathbb{C}||\frac{-1}{x'+y'i}|>1\}

Then finally we rearrange the right side of the equation as:

1x2+y2>1\frac{1}{\sqrt{x'^2+y'^2}}>1 1>x2+y21>x'^2+y'^2

Therefore, we can conclude that the image is a filled circle with radius 1 (excluding edges):

FIX-ME: Insert a diagram here

A more elegant way

We can use Euler's formula to solve questions involving circles. Using the above example:

We let x+yix+yi as reiθre^{i\theta} and substitute:

D={reiθCr>1As z is r}D=\{re^{i\theta}\in\mathbb{C}|\underbrace{r>1}_{\text{As $\|z\|$ is $r$}}\}

Then following the usual steps:

f(D)={r1eiθCr>1}f(D)=\{-r^{-1}e^{-i\theta}\in \mathbb{C}| r > 1\} f(D)={r1eiθ+iπ1=eiπCr>1}f(D)=\{r^{-1}\underbrace{e^{-i\theta+i\pi}}_{-1=e^{i\pi}}\in \mathbb{C}| r > 1\} Let r=r1,θ=πθr=r1Let\ r'=r^{-1}, \theta'=\pi-\theta\rightarrow r=r'^{-1} f(D)={reiθCr1>1}f(D)=\{r'e^{i\theta'}\in \mathbb{C}| r^{-1} > 1\} f(D)={reiθCr<1}f(D)=\{r'e^{i\theta'}\in \mathbb{C}| r < 1\}

On this page